2022 |
McMahon, T; Sivaramakrishnan, A; Kedia, K; Granados, E; Bekris, K Terrain-Aware Learned Controllers for Sampling-Based Kinodynamic Planning Over Physically Simulated Terrains Inproceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022. Abstract | Links | BibTeX | Tags: Dynamics, Learning, Planning @inproceedings{McMahon:2022ab, title = {Terrain-Aware Learned Controllers for Sampling-Based Kinodynamic Planning Over Physically Simulated Terrains}, author = {T McMahon and A Sivaramakrishnan and K Kedia and E Granados and K Bekris}, url = {https://ieeexplore.ieee.org/document/9982136}, year = {2022}, date = {2022-06-01}, booktitle = {IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, abstract = {This paper explores learning an effective controller for improving the efficiency of kinodynamic planning for vehicular systems navigating uneven terrains. It describes the pipeline for training the corresponding controller and using it for motion planning purposes. The training process uses a soft actor-critic approach with hindsight experience replay to train a model, which is parameterized by the incline of the robot's local terrain. This trained model is then used during the expansion process of an asymptotically optimal kinodynamic planner to generate controls that allow the robot to reach desired local states. It is also used to define a heuristic cost-to-go function for the planner via a wavefront operation that estimates the cost of reaching the global goal. The cost-to-go function is used both for selecting nodes for expansion as well as for generating local goals for the controller to expand towards. The accompanying experimental section applies the integrated planning solution on models of all-terrain robots in a variety of physically simulated terrains. It shows that the proposed terrain-aware controller and the proposed wavefront function based on the cost-to-go model enable motion planners to find solutions in less time and with lower cost than alternatives. An ablation study emphasizes the benefits of a learned controller that is parameterized by the incline of the robot's local terrain as well as of an incremental training process for the controller.}, keywords = {Dynamics, Learning, Planning}, pubstate = {published}, tppubtype = {inproceedings} } This paper explores learning an effective controller for improving the efficiency of kinodynamic planning for vehicular systems navigating uneven terrains. It describes the pipeline for training the corresponding controller and using it for motion planning purposes. The training process uses a soft actor-critic approach with hindsight experience replay to train a model, which is parameterized by the incline of the robot's local terrain. This trained model is then used during the expansion process of an asymptotically optimal kinodynamic planner to generate controls that allow the robot to reach desired local states. It is also used to define a heuristic cost-to-go function for the planner via a wavefront operation that estimates the cost of reaching the global goal. The cost-to-go function is used both for selecting nodes for expansion as well as for generating local goals for the controller to expand towards. The accompanying experimental section applies the integrated planning solution on models of all-terrain robots in a variety of physically simulated terrains. It shows that the proposed terrain-aware controller and the proposed wavefront function based on the cost-to-go model enable motion planners to find solutions in less time and with lower cost than alternatives. An ablation study emphasizes the benefits of a learned controller that is parameterized by the incline of the robot's local terrain as well as of an incremental training process for the controller. |
2022 |
Terrain-Aware Learned Controllers for Sampling-Based Kinodynamic Planning Over Physically Simulated Terrains Inproceedings IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022. |